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Energy transport in the integrable system in contact with various types of phonon reservoirs
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We study how energy transport in an integrable system is affected by the spectral densities of heat reser-
voirs. The model investigated here is the quantum harmonic chain with both ends in contact with two heat
reservoirs at different temperatures. The master equation for the reduced density matrix is derived on the
assumption that the reservoirs are composed of an infinite number of independent harmonic oscillators. We
evaluate temperature profile and energy flux in the stationary state for the master equation and discuss how
they depend on the types of spectral densities. When we attach the reservoirs of the same type of spectral
density, we find that the temperature profile is independent of the types. On the other hand, when the two
reservoirs have different types of spectral densities, the energy profile near the ends of the chain depends on the
types. When the coupling is finite, the temperature profile near the ends shows a wide variation of behavior
dependent on spectral densities and temperatures of reservoirs. This dependence is discussed with the Fokker-
Planck equations obtained in the classical limit.

PACS number~s!: 05.60.2k, 05.30.2d, 05.70.Ln
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I. INTRODUCTION

Generally integrable systems show abnormal ene
transport, namely, the Fourier heat law is not realized th
@1,2#. This attributes to the lack of scattering between mod
which should be induced by nonintegrability. Two typic
characteristics are seen in the energy transport in integr
systems. One is energy flux per unit volume independen
the system size. The other is a flat temperature profile w
no global temperature gradient.

The harmonic chain is a typical integrable system wh
shows these characteristics@3–7#. Rieder, Lebowitz, and
Lieb ~RLL! investigated the classical harmonic chain who
ends are in contact with heat reservoirs at different temp
tures@3#. They exactly evaluated the covariance matrix of t
variables in the stationary state using the Langevin equat
and they proved these characteristics. That is, they found
energy flux per volume is proportional to only temperatu
difference and is independent of the system size, and
global temperature gradient is formed. Although the te
perature profile is flat in the internal region, they found t
peculiar behavior in the vicinity of the ends of the cha
Namely, the local temperature ishigher than the bulk value
near thecolder reservoir, andlower near thehotter reservoir.

Zürcher and Talkner~ZT! @4# investigated a quantum
model corresponding to that of RLL with use of the quantu
Langevin equation@8#. As for the bulk behavior, they found
the same features as in the classical case. That is, no g
temperature gradient is formed and energy flux is indep
dent of system size. In the high temperature limit, the qu
tum Langevin equation is reduced to the Langevin equa
with the Gaussian white noise and all the characteristics
tained in Ref.@3# are reproduced. However, the temperatu
PRE 611063-651X/2000/61~3!/2397~13!/$15.00
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profile in the vicinity of the ends of the system shows so
variety depending on temperature and a damping consta

The reservoir employed in these studies is only the Oh
type, which is one of the possible three types of heat re
voirs: sub-Ohmic, Ohmic, and super-Ohmic. Because in
grable systems have no scattering between modes, their
equilibrium behavior will be easily affected by the types
reservoirs at the boundary. Thus in this paper, we investig
how nonequilibrium nature in the harmonic chain depen
on the types of reservoirs. Here we derive the master eq
tion for the reduced density matrix through the projecti
operator method on the assumption that the reservoir is c
posed of an infinite number of independent harmonic os
lators. This method is valid in the weak coupling limit an
for slow motion of the system because it treats the sec
order perturbation with respect to a coupling constant and
Markovian approximation@9#.

We investigate the effect of the spectral density on
temperature profile and energy flux in the quantum harmo
chain in contact with two reservoirs applying the mas
equation for reduced density matrix. At the weak coupli
limit, the stationary state can be obtained analytically, an
is found that when the two reservoirs have the same typ
spectral density, the temperature profile is independent o
and the profile is the same as the result previously repo
@3,4#. On the other hand, when the spectral densities are
different types, the temperature profile depends on the ty
Even in the classical limit, the internal temperature devia
from the mean value of the temperature of the reservoirs
we observe a deviation of temperatures around ends from
temperature of internal region. The direction of deviation
determined by frequency dependence of the spectral den
nearv50.
2397 ©2000 The American Physical Society
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We also investigate the reduced density matrix with fin
values of the coupling constant numerically. Although it
derived in the perturbation of the coupling constant and i
only valid in the weak coupling limit, we dare regard th
master equation with a finite coupling constant as a mo
for a time evolution with a dissipation. In other words, w
assume that the time evolution qualitatively represents a k
of real phenomena in nature, where the coupling cons
represents the strength of the dissipative mechanism.
study qualitatively the dependence of temperature profile
the types of reservoirs. It even has been reported in s
cases that the reduced density matrix with a finite coup
can produce a good long time behavior of the system
comparison with the exact path-integral result not only qu
tatively but also quantitatively@10#.

The temperature profile at the ends of the chain is fou
to depend on the spectral density and the temperatures o
reservoirs even when reservoirs at both ends have the s
type of spectral density. The dependence on the types o
reservoirs is discussed in the Fokker-Planck equations in
classical limit.

This paper is organized as follows. In Sec. II, we der
the master equation for the reduced density matrix of a g
eral many body system in contact with a phonon reserv
Section III is devoted to the investigation on energy transp
in the harmonic chain coupled to the phonon reservoirs
weak coupling limit. In Sec. VI, we consider the case
finite coupling and investigate corresponding Fokker-Pla
equations. Summary and discussions are given in Sec. V

II. THE PHONON RESERVOIR

A. Master equation for reduced density matrix

In this subsection, we derive the master equation for
reduced density matrix of a system in contact with a phon
reservoir. Let us consider the following total Hamiltonia
H tot :

H tot5H1H int1HR, ~2.1!

whereH denotes the Hamiltonian for the system of intere
HR denotes the Hamiltonian for the reservoir, andH int de-
scribes the interaction between the system and the reser
We assume that the reservoir consists of an infinite num
of mutually independent harmonic oscillators@11–14#, that
is,

HR5(
a

pa
2

2ma
1

mava
2xa

2

2
5(

a
\vaS ba

†ba1
1

2D , ~2.2!

whereba
† andba are the creation and annihilation operato

for the ath mode. We assume a linear coupling betwee
Hermitian operator of the systemX and reservoir’s operator
in the form

H int5(
a

lS mava

2 D 1/2

gaxaX1l82(
a

ga
2

4va
X2

5lA\(
a

ga~ba
†1ba!X1l82(

a

ga
2

4va
X2 ~l8>l!,

~2.3!
s

el

d
nt
e
n
e

g
n
i-

d
the
me
he
he

n-
r.
rt
at
f
k

e
n

t,

ir.
er

a

where l is a coupling constant andgas andl8 are some
constants. We put the second term in the right hand sid
order to make the total Hamiltonian to be bounded@15#. This
term is regarded as a part ofH:

H→H1l82(
a

ga
2

4va
X2. ~2.4!

In this section, we do not make any assumption for the s
tem, though we consider a harmonic chain for the system
the next section.

We derive the master equation for the reduced den
matrix following the standard method@9#. We start from the
quantum Liouville equation for the total system

]r tot~ t !

]t
5

1

i\
@H tot ,r tot~ t !#, ~2.5!

wherer tot(t) is the density matrix for the total system. Und
the condition that the reservoir is initially in the equilibrium
state at inverse temperatureb, the degrees of freedom of th
reservoir are traced out with the aid of projection operato
In order to obtain an equation which can be solved pra
cally, we usually expand it up to second order with respec
l and also adopt the Markovian approximation, which
valid when correlations between the reservoir’s variables
short-lived. As a result we obtain an equation for the redu
density matrixr(t)5TrR r tot(t) (TrR means the trace con
cerning the reservoir’s degrees of freedom! of the form

]

]t
r~ t !5

1

i\
@H,r~ t !#2l2Gr~ t !, ~2.6!

whereGr(t) is given by

Gr~ t !5
1

\2E0

`

dt8E
2`

`

dveivt8F~v!

3$XX~2t8!r~ t !2eb\vXr~ t !X~2t8!

1eb\vr~ t !X~2t8!X2X~2t8!r~ t !X%. ~2.7!

In Eq. ~2.7!, X(2t8) means the Heisenberg operator at tim
2t8

X~2t8!5e2 iHt 8/\XeiHt 8/\, ~2.8!

and the functionF(v) denotes the Fourier transform of th
two-point function of the reservoir’s operators coupling toX,
namely,

F~v!5
1

2pE2`

`

e2 ivtF~ t !dt, ~2.9!

whereF(t) is given by
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F~ t !5TrRF (
a,a8

S mava

2 D 1/2S ma8va8
2 D 1/2

3gaga8xa~0!xa8~ t !e2bHRG YTrR e2bHR

5\(
a

ga
2 eivat1eb\vae2 ivat

eb\va21
. ~2.10!

Hence, denoting the reservoir’s density of states with resp
to frequencyv by D(v), we can writeF~v! as

F~v!5\g~v!2
D~v!2D~2v!

eb\v21
, ~2.11!

where we introduced a smooth functiong~v! that satisfies
g(6va)5ga . Here we define the spectral densityI (v) as

I ~v!5g~v!2D~v!. ~2.12!

The following form for the spectral density is considered
the literature:

I ~v!5I 0vau~v!, ~2.13!

where u~v! is the step function:u~v!51 for v>0 and
u~v!50 for v,0. The reservoir is called Ohmic ifa51,
sub-Ohmic ifa,1, and super-Ohmic ifa.1 @13#.

In the following we rewrite Eq.~2.6! in a form convenient
for later use. Let us consider the matrix components of
eratorGr(t), ^kuGr(t)un&, whereuk& andun& are eigenstates
for the system HamiltonianH with energy eigenvaluesEk
andEn , respectively. For the integral with respect tot8, we
use the mathematical formula

E
0

`

eintdt5pd~n!1P i

n
, ~2.14!

neglecting the principal value@9,18,19# and the Kubo-
Martin-Schwinger ~KMS! condition F(v)eb\v5F(2v).
Then, the matrix components of operatorGr(t) is written as

^kuGr~ t !un&5
p

\2 (
l ,m

FXk,lXl ,mFS El2Em

\ D rm,n~ t !

2Xk,lr l ,m~ t !Xn,m* FS En2Em

\ D
1rk,l~ t !Xm,l* FS Em2El

\ DXm,n

2Xk,lFS Ek2El

\ D r l ,m~ t !Xm,nG . ~2.15!

Now we introduce the operatorR whose matrix elements
are
ct

-

^ l uRum&5
1

\
Xl ,mFS El2Em

\ D

5
1

\
Xl ,m

I S El2Em

\ D2I S 2
El2Em

\ D
eb(El2Em)21

. ~2.16!

ThenGr(t) is written in the following compact form:

Gr~ t !5
p

\
@XRr~ t !2Rr~ t !X2Xr~ t !R†1r~ t !R†X#

5
p

\
$@X,Rr~ t !#1@X,Rr~ t !#†%. ~2.17!

Thus we arrive at the master equation of the form

]r~ t !

]t
5

1

i\
@H,r~ t !#2

pl2

\
$@X,Rr~ t !#1@X,Rr~ t !#†%.

~2.18!

This is a generalized Lindblad form@16,17# treating general
many body system with the coupling form~2.3!. When the
system has many body interactions, the noncommutabili
cause the operatorR to contain all degrees of freedom of th
system even ifH int is a part of the system. Thus, in generalR
has a complicated form with all degrees freedom of the s
tem. Nevertheless, Eq.~2.16! gives the explicit and compac
form of R for the general systems when the reservoir is giv
by Eq. ~2.2!. Thus we can expect that the master equat
~2.18! is widely applicable for the concrete studies of ma
body systems.

In the present study this master equation is used as a b
equation for a system coupled with the phonon reservoir.
readily checked that Eq.~2.18! satisfies at least a necessa
condition for the master equation, i.e., the canonical dis
butione2bH/Tr(e2bH) into r in Eq. ~2.18! gives a stationary
solution. We also expect the stability of the stationary so
tion at least whenl is small enough.

B. Comparison with the quantum Langevin dynamics

Here we briefly review another type of equation rep
senting quantum dynamics with a thermal environment t
is called a quantum Langevin equation which was used
previous studies@4# and compare it with the master equatio
for reduced density matrix~2.18! ~see also Ref.@15# for other
types of quantum Langevin equations we no not expl
here!.

The quantum Langevin equation was introduced by Fo
Kac, and Mazur@8#. They considered the following couple
oscillators composed of 2N11 particles:

H5
1

2 (
n52N

N

pn
21

1

2 (
m,n52N

N

qmAm,nqn , ~2.19!

whereqn and pn are thei th canonical coordinate and mo
mentum variable, respectively. The matrixA5(Am,n) is a
(2N11)3(2N11) symmetric matrix whose elements are
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Am,n5
1

2N11 (
k52N

N

vk
2 expF i

2pk

2N11
~m2n!G .

~2.20!

It should be noted that the eigenvalues of this matrix
vs

2 (s52N,2N11, . . . ,N21,N). The authors assume
that the initial state of the system~2.19! is in equilibrium at
a temperature, and examined under what condition the
havior of particle 0 can be described by a Langevin equat

They found the following. If the eigenfrequencies of th
whole systemvs , have the special form

vs
25 f 2 tan2S ps

2N11D , ~2.21!

the motion of a particle of the system in the equilibrium st
is described by

]q0~ t !

]t
5p0 , ~2.22a!

]p0~ t !

]t
52 f p01E~ t !, ~2.22b!

whereq0 , p0, andE(t) are operators in the Heisenberg pi
ture. The operatorE(t) is described by operators of particle
In the equilibrium state,E(t) behaves as the Gaussian ra
dom force with vanishing mean̂E(t)&50, where ^•••&
means Tr(exp@2bH„$qi(0)%,$pi(0)%…# . . . )/Z. It also satis-
fies the commutation relation

@E~ t !,E~s!#52i\ f
]

]t
d~ t2s! ~2.23!

and has the symmetrized correlation

1

2
^E~ t !E~ t1t!1E~ t1t!E~ t !&

5
\ f

p E
0

`

v cothFb\v

2 Gcos~vt!dv. ~2.24!

This dynamics yields a classical Langevin equation w
Gaussian white noise in the classical limit\→0.

This dynamics has been applied to the quantum harm
chain and investigated some quantum effects in energy tr
port phenomena@4,7#. However, strictly speaking this quan
tum Langevin equation is the dynamics for a simple parti
system in an equilibrium state. Therefore this dynamics
not consistent with a nonequilibrium dynamics for ma
body system in principle. The master equation for redu
density matrix~2.18! is derived for a general many bod
system on the assumption that only the reservoir is in e
librium. Thus the master equation~2.18! is more suitable in
this context.

III. ENERGY TRANSPORT IN THE QUANTUM
HARMONIC CHAIN AT THE WEAK COUPLING LIMIT

In this section, we investigate energy transport in
quantum harmonic chain in contact with two phonon res
e

e-
n.

e

-

ic
s-

e
is

d

i-

e
r-

voirs at different temperatures with various types of spec
density of the thermal reservoir and examine what is co
mon with and what is different from the results in the cla
sical case@3# and also the quantum case@4# with the Ohmic
spectral density. We first discuss the case of weak coup
limit.

A. System

Here we take the one-dimensional quantum harmo
chain

H5 (
n51

N pn
2

2m
1 (

n50

N mv0
2

2
~xn112xn!2 ~3.1!

as the system. This Hamiltonian should be considered to
the renormalized Hamiltonian including the second term
Eq. ~2.3!. As in Ref.@3#, we impose the fixed boundary con
dition, x05xN1150. By Fourier transformation

xn5A 2

N11(k
uk sin~kn!,

pn5A 2

N11(k
vk sin~kn!, ~3.2!

the Hamiltonian is decoupled into the normal modes as

H5(
k

vk
2

2m
1

mvk
2uk

2

2
~3.3!

wherevk52v0 sin(k/2). The wave numberk runs through
the valuesk5pl /(N11) (l 51,2, . . . ,N21,N). It is eas-
ily found that operatorsuk andvk8 satisfy the commutation
relations for canonical variables

@uk ,vk8#5 i\dk,k8 and @uk ,uk8#5@vk ,vk8#50
~3.4!

and introducing the creation and annihilation operatorsak
†

andak in the ordinary manner

ak5Amv0 sin~k/2!

\ S uk1
ivk

2mv0 sin~k/2! D
and

ak
†5Amv0 sin~k/2!

\ S uk2
ivk

2mv0 sin~k/2! D ,

we obtain

H5(
k

\vkS ak
†ak1

1

2D . ~3.5!

B. Equation of motion of the system which contacts
with two different reservoirs

In order to describe the system whose ends are attache
phonon reservoirs at different temperatures, we set dyna
cal model where the contacts with thermal baths are tak
into account by the dissipation terms of the forms in E
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~2.18!. That is, variables at the left-end and right-end poi
x1 andxN are linearly coupled with one phonon reservoir
inverse temperaturebL andbR , respectively.

We assume that the coupling strengthl and the form of
the couplingga in Eq. ~2.3! are common for both the rese
voirs. Then the master equation for the reduced density
trix is written as

]

]t
r~ t !5

1

i\
@H,r~ t !#2mGLr~ t !2mGRr~ t !, ~3.6!

wherem5l2. In principle the form of the dissipation term
of Eq. ~2.18! is derived in the condition where the system
coupled only to one reservoir. Even when the two differe
reservoirs are contact with the system, the decoupled form
the dissipation term in Eq.~3.6! is valid in the order ofl2.
From Eq.~2.18! the damping termsGLr(t) andGRr(t) are

GLr~ t !5
p

\
$@x1 ,RLr~ t !#1@x1 ,RLr~ t !#†%

and ~3.7!

GRr~ t !5
p

\
$@xN ,RRr~ t !#1@xN ,RRr~ t !#†%,

respectively. Here operatorsRL andRR are defined through
the matrix elements

^ l uRLum&5

I LS El2Em

\ D2I LS 2
El2Em

\ D
ebL(El2Em)21

^ l ux1um&,

~3.8a!
s
t

a-

t
of

^ l uRRum&5

I RS El2Em

\ D2I RS 2
El2Em

\ D
ebR(El2Em)21

^ l uxNum&,

~3.8b!

andEl denotes the energy eigenvalue for stateu l &. I L andI R
are the spectral density of the left and the right reserv
respectively.

To solve this equation, we need to express the opera
RL andRR in terms ofak andak

† . The operatorsx1 andxN

are written as

x15A \

2~N11!mv0
(

k

sink

Asin~k/2!
~ak1ak

†! ~3.9!

and

xN5A \

2~N11!mv0
(

k

sin~Nk!

Asin~k/2!
~ak1ak

†!. ~3.10!

Let unk& denote the eigenstate for the number operatorak
†ak

with the eigenvaluenk , namely ak
†akunk&5nkunk&. The

eigenstates for the system Hamiltonian~3.5! are given by the
direct product of number statesunk& as u$nk%&5)kunk&,
whose energy eigenvalue isE($nk%)5(k(nk1 1

2 )\vk .
The matrix elements ofRL are given in terms of the

eigenstatesu$nk%& as
^$nk8%uRLu$mk8%&5A \

2~N11!mv0
(

k

sink

Asin~k/2!

3

I LS E~$nk8%!2E~$mk8%!

\ D2I LS 2
E~$nk8%!2E~$mk8%!

\ D
exp$bL@E~$nk8%!2E~$mk8%!#%21

@^$nk8%uaku$mk8%&1^$nk8%uak
†u$mk8%&#.

~3.11!

Now we note that

^$nk8%uaku$mk8%&Þ0 only if nk85mk82dk8,k for ;k8, ~3.12!

^$nk8%uak
†u$mk8%&Þ0 only if nk85mk81dk8,k for ;k8, ~3.13!

and I (v)50 for v,0. Then Eq.~3.11! is transformed into

^$nk8%uRLu$mk8%&5A \

2~N11!mv0
(

k

I L~vk!sink

Asin~k/2!
F ebL\vk

ebL\vk21
^$nk8%uaku$mk8%&1

1

ebL\vk21
^$nk8%uak

†u$mk8%&G .

~3.14!

Thus the operatorRL can be represented as

RL5A \

8~N11!mv0
(

k

sink

Asin~k/2!

I L~vk!

sinh~bL\vk/2!
~ebL\vk/2ak1e2bL\vk/2ak

†!. ~3.15!

In the same manner, the operatorRR is represented as
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RR5A \

8~N11!mv0
(

k

sin~Nk!

Asin~k/2!

I R~vk!

sinh~bR\vk/2!
~ebR\vk/2ak1e2bR\vk/2ak

†!. ~3.16!

C. Moments in the stationary state

As will be shown later, to evaluate mean kinetic energy of a particle and energy flux in the stationary state, we ha
to calculate the second moments

^akak8&5Tr~akak8rst! ~3.17!

and

^ak
†ak8&5Tr~ak

†ak8rst!, ~3.18!

whererst denotes the stationary solution of Eq.~3.6!. First, we consider Eq.~3.17!. Because the left hand side of Eq.~3.6!
vanishes in the stationary state, we obtain

1

i\
Tr~akak8@H,r#!2

pm

\
@Tr~akak8@x1 ,RLrst# !1Tr~akak8@x1 ,RLrst#

†!#

2
pm

\
@Tr~akak8@xN ,RRr#!1Tr~akak8@xN ,RRr#†!#50. ~3.19!

This equation is rewritten as follows after tedious but straightforward calculations:

i ~vk1vk8!^akak8&1
pm

4~N11!mv0
(
k1

sink1

Asin~k1/2!

I L~vk1
!

sinh~bL\vk1
/2!

3H sink8

Asin~k8/2!
@ebL\vk1

/2~^akak1
&2^ak1

† ak&!1e2bL\vk1
/2~^akak1

† &2^ak1
ak&!#

1
sink

Asin~k/2!
@ebL\vk1

/2~^ak8ak1
&2^ak1

† ak8&!1e2bL\vk1
/2~^ak8ak1

† &2^ak1
ak8&!#J

1
pm

4~N11!mv0
(
k1

sin~Nk1!

Asin~k1/2!

I R~vk1
!

sinh~bR\vk1
/2!

3H sin~Nk8!

Asin~k8/2!
@ebR\vk1

/2~^akak1
&2^ak1

† ak&!1e2bR\vk1
/2~^akak1

† &2^ak1
ak&!#

1
sin~Nk!

Asin~k/2!
@ebR\vk1

/2~^ak8ak1
&2^ak1

† ak8&!1e2bR\vk1
/2~^ak8ak1

† &2^ak1
ak8&!#J 50. ~3.20!

In the same way, Eq.~3.18! is also transformed into

i ~vk82vk!^ak
†ak8&1

pm

4~N11!mv0
(
k1

sink1

Asin~k1/2!

I L~vk1
!

sinh~bL\vk1
/2!

3H sink

Asin~k/2!
@ebL\vk1

/2~^ak1

† ak8&2^ak8ak1
&!1e2bL\vk1

/2~^ak1
ak8&2^ak8ak1

† &!#

1
sink8

Asin~k8/2!
@ebL\vk1

/2~^ak
†ak1

&2^ak1

† ak
†&!1e2bL\vk1

/2~^ak
†ak1

† &2^ak1
ak

†&!#J
1

pm

4~N11!mv0
(
k1

sin~Nk1!

Asin~k1/2!

I R~vk1
!

sinh~bR\vk1
/2!
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3H sin~Nk!

Asin~k/2!
@ebR\vk1

/2~^ak1

† ak8&2^ak8ak1
&!1e2bR\vk1

/2~^ak1
ak8&2^ak8ak1

† &!#

1
sin~Nk8!

Asin~k8/2!
@ebR\vk1

/2~^ak
†ak1

&2^ak1

† ak
†&!1e2bR\vk1

/2~^ak
†ak1

† &2^ak1
ak

†&!#J 50. ~3.21!
in

m-
al

icle

ion

into

f
the
D. Total energy Est

We will solve these equations by perturbation. Expand
^akak8& and ^ak

†ak8& with respect tom,

^akak8&5^akak8&01m^akak8&11m2^akak8&21•••,
~3.22!

^ak
†ak8

† &5^ak
†ak8

† &01m^ak
†ak8

† &11m2^ak
†ak8

† &21•••,
~3.23!

^ak
†ak8&5^ak

†ak8&01m^ak
†ak8&11m2^ak

†ak8&21•••,
~3.24!

^akak8
† &5^akak8

† &01m^akak8
† &11m2^akak8

† &21•••,
~3.25!

we consider the relation of each order ofm. Using the com-
mutation relations

^akak8&n5^ak8ak&n ,

^ak
†ak8

† &n5^ak8
† ak

†&n ,

^akak8
† &n5^ak8

† ak&n1dn,0dk,k8 , ~3.26!

we obtain the following relations at the zeroth order:

~vk1vk8!^akak8&050 and ~vk82vk!^ak
†ak8&050.

~3.27!

Accordingly we have for allk andk8

^akak8&050, ~3.28!

and forkÞk8

^ak
†ak8&050. ~3.29!

Puttingk5k8 in the first order equation ofm, we have

sin2 kIL~vk!

sinh~bL\vk/2!
~ebL\vk/2^ak

†ak&02e2bL\vk/2^akak
†&0!

1
sin2~Nk!I R~vk!

sinh~bR\vk/2!
~ebR\vk/2^ak

†ak&0

2e2bR\vk/2^akak
†&0!50. ~3.30!

Since sin2 k5sin2(Nk)Þ0, Eq. ~3.30! leads to

^ak
†ak&05

1

I L~vk!1I R~vk!
F I L~vk!

ebL\vk21
1

I R~vk!

ebR\vk21
G . ~3.31!

Here the energy of the system is
g
Est5Tr~Hrst!5(

k

\vk

I L~vk!1I R~vk!

3F I L~vk!

ebL\vk21
1

I R~vk!

ebR\vk21
G . ~3.32!

In particular, whenI L(vk)5I R(vk), we find thatEst is the
arithmetic mean between equilibrium energy at inverse te
peraturebL and atbR regardless of the types of the spectr
density, i.e.,

Est5
1

2 FTr~He2bLH!

Tr e2bLH
1

Tr~He2bRH!

Tr e2bRH G . ~3.33!

E. Kinetic energy of a particle and energy flux

Here we compute mean kinetic energy of each part
and energy flux up to the first order with respect tom. The
mean kinetic energy of thenth particle«n is defined by

«n5K pn
2

2mL 5TrS pn
2

2m
rstD , ~3.34!

which is expressed in terms of the creation and annihilat
operators as

«n5
2\v0

N11 (
k,k8

Asin~k/2!sin~k8/2! sin~kn!sin~k8n!

3~^akak8&2^akak8
† &2^ak

†ak8&1^ak
†ak8

† &!. ~3.35!

Substituting the results obtained in the last subsection
the above equation, we have

«n5
\v0

N11 (
k

sin~k/2!sin2~kn!~2^ak
†ak&011!

5
\v0

N11 (
k

sin~k/2!sin2~kn!F 2

I L~vk!1I R~vk!

3S I L~vk!

ebL\vk21
1

I R~vk!

ebR\vk21
D 11G . ~3.36!

In the classical limit, Eq.~3.36! becomes

2«n5
2TL

p E
0

p

dk sin2~kn!
I L~vk!

I L~vk!1I R~vk!

1
2TR

p E
0

p

dk sin2~kn!
I R~vk!

I L~vk!1I R~vk!
, ~3.37!

whereTL5bL
21 andTR5bR

21 are the temperature values o
the left reservoir and the right reservoir, respectively. In
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classical limit, 2«n can be interpreted as the temperature
site n. Especially when both the reservoirs are of the sa
type, namely,I L(vk)5I R(vk), we have 2«n5(TL1TR)/2
regardless of the types of the spectral density. This me
completely flat temperature profile, which was origina
found by RLL when the both reservoirs are of the Ohm
type @3#. On the other hand, Eq.~3.37! shows that the tem
perature profile in integrable systems can be easily chan
by controlling the combination of the types of spectral de
sity of reservoirs, so that in the case ofI L(vk)ÞI R(vk), the
internal temperature deviates from (TL1TR)/2 in the classi-
cal limit.

We numerically estimate Eq.~3.36! to investigate the gen
eral feature of temperature profile for various combinatio
of spectral densities. We present typical temperature pro
in Fig. 1. In Fig. 1~a! we take the sub-Ohmic type reservo
I L5v0.5 for left side, and the super-Ohmic oneI R5v1.5 for
the right side. In Fig. 1~b!, the converse case, namely,I L

5v1.5 and I R5v0.5 is considered. In both the cases, para
eters are set tom5\5v051.0, andTL5200.0,TR550.0.
As is known from these figures, temperature deviates fr
the internal temperature value in the same direction in
vicinity of both the ends. As the result the deviated tempe
ture values become close to the temperature of the rese
whose spectral density has larger power. We numeric
confirmed this dependence for many sets of spectral dens
(I L ,I R) and temperatures (TL ,TR) including low tempera-
tures.

FIG. 1. Temperature profile along the chain forTL5200.0,
TR550.0: ~a! I L(v)5v0.5 and I R(v)5v1.5, ~b! I L(v)5v1.5 and
I R(v)5v0.5. The system size isN5150.
t
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Energy flux is defined via the equation of continuit
From the master equation~3.6!, the time derivative for the
energy of the system satisfies

]

]t
Tr @Hr~ t !#52Tr @mHGLr~ t !#2Tr @mHGRr~ t !#. ~3.38!

The first term in the right-hand side is regarded as incom
energy flux from the left reservoir and the second term
coming energy flux from the right reservoir. We call th
formerJL and the latterJR . In the stationary state, of cours
JL

st1JR
st50 must hold. We can calculateJL

st as follows:

JL
st52

pm

\
Tr~H@x1 ,RLr#1H@x1 ,RLr#†!

5
p\m

~N11!m (
k

I L~vk!I R~vk!

I L~vk!1I R~vk!

3S 1

ebL\vk21
2

1

ebR\vk21
D . ~3.39!

If N@1, we can replace the summation by an integral a
obtain

JL
st5

\m

m E
0

p I L~vk!I R~vk!

I L~vk!1I R~vk!

3sin2 kS 1

ebL\vk21
2

1

ebR\vk21
D dk. ~3.40!

In the classical limit (\→0), JL
st goes to

JL
st5mC~TL2TR!, ~3.41!

where

C5
1

mv0
E

0

p sin2 k

sin~k/2!

3
I L„2v0 sin~k/2!…I R„2v0 sin~k/2!…

I L„2v0 sin~k/2!…1I R„2v0 sin~k/2!…
dk. ~3.42!

Thus in the classical limit, energy flux is proportional to th
temperature difference and independent of the system
regardless of the types and the combinations of the spe
densities of reservoirs.

IV. FINITE COUPLING

The master equation~2.18! is justified only in O(m).
However, when we study the model with a finite couplin
constant, the quantitative effect of a finite coupling inevi
bly deviates from those of the original model. Neverthele
time evolution of the reduced density matrix has been
garded as describing a variety of relaxation processes, a
successfully explained a variety of interesting phenomen
real systems@18,20#. This shows that the master equation c
well approximate the dynamics in real dissipative system
least qualitatively. In some cases the time evolution of
reduced density matrix with a finite coupling reproduc
quantitatively correct results even for long times@10#.

Thus we investigate here the effect of finite coupli
which is a small but finite value, and discuss the behavio
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temperature profile qualitatively. In this section, we confi
ourselves to the case of the same spectral density at
ends, namely,

I L5I R5I . ~4.1!

A. Temperature profile

We evaluate contributions from higher-order terms a
find deviations from the flat temperature profile near the e
of the chain. We first calculate the first-order coefficien
From the first-order equations in Eqs.~3.20! and ~3.21!, we
have for allk andk8

^akak8&15
ip@sink sink82sin~Nk!sin~Nk8!#

4~N11!mv0~vk1vk8!Asin~k/2!sin~k8/2!

3$I ~vk!@nL~vk!2nR~vk!#

1I ~vk8!@nL~vk8!2nR~vk8!#%, ~4.2!

and forkÞk8

^ak
†ak8&15

ip@sink sink82sin~Nk!sin~Nk8!#

4~N11!mv0~vk2vk8!Asin~k/2!sin~k8/2!

3$I ~vk!@nL~vk!2nR~vk!#

1I ~vk8!@nL~vk8!2nR~vk8!#%, ~4.3!

wherenL(v) is the Bose-Einstein distribution functions at a
inverse temperaturebL

nL~v!5
1

ebL\v21
, ~4.4!

andnR(v) is that atbR

nR~v!5
1

ebR\v21
. ~4.5!

Equations~3.20! and ~3.21! imply that the first-order coeffi-
cients must be pure imaginary. On the other hand,^ak

†ak&1

must be real at the same time. Thus, we have

^ak
†ak&150. ~4.6!

From Eqs.~3.20! and ~3.21!, it turns out that ifn>1 the
(n11)st-order terms are computed via the following equ
tions from thenth order terms; for allk andk8

^akak8&n115
ip

2~N11!mv0~vk1vk8!
(
k1

I ~vk1
!

3Fsink1 sink81sin~Nk1!sin~Nk8!

Asin~k1/2!sin~k8/2!

3~^akak1
&n2^ak1

† ak&n!

1
sink1 sink1sin~Nk1!sin~Nk!

Asin~k1/2!sin~k/2!

3^ak8ak1
&n2~^ak1

† ak8&n!G . ~4.7!
th

d
s
.

-

If k5k8,

^ak
†ak8&n115

ip

2~N11!mv0~vk82vk!
(
k1

I ~vk1
!

3Fsink1 sink81sin~Nk1!sin~Nk8!

Asin~k1/2!sin~k8/2!

3~^ak
†ak1

&n2^akak1
&n* !

1
sink1 sink1sin~Nk1!sin~Nk!

Asin~k1/2!sin~k/2!

3~^ak1

† ak8&n2^ak8ak1
&n!G ~4.8!

and^ak
†ak&n11 is computed through the other coefficients

the same order as

^ak
†ak&n115

1

2
~^akak&n111^akak&n11* !2

Asin~k/2!

4I ~vk!sin2k

3 (
k8Þk

sink8sink1sin~Nk8!sin~Nk!

Asin~k8/2!
I ~vk8!

3~^ak8
† ak&n111^ak

†ak8&n112^akak8&n11

2^akak8&n11* !. ~4.9!

Because the above equations contain the spectral density
have to specify its functional form. As has given in E
~2.13!, we employ the following form for the spectral den
sity:

I ~v!5I 0va. ~4.10!

For a51.0 anda51.5, we have computed mean kinet
energy of thenth particle «n up to the 20th order, where
quantities~3.22!–~3.25! seem to converge. For eacha, the
following sets of temperatures of for the reservoirs are c
sen: ~a! TL5200.0 andTR550.0, ~b! TL510.0 and TR
50.1, and~c! TL50.1 andTR50.02. These choices of pa
rameters are the same as used in Ref.@4# by ZT. Other pa-
rameters are commonly set asm5v05\51.0, m50.1, and
I 051/p. In the equilibrium state at inverse temperatureb, «n
is given by

«n5fn~b!5
\v0

N11 (
l 51

N

sin
p l

2~N11!

3sin2
p ln

N11
cothFb\v0 sin

p l

2~N11!G , ~4.11!

and thus the local temperaturesTn is defined by the above
function, i.e.,Tn51/fn

21(«n).
In Figs. 2 and 3,$Tn% are plotted fora51.0 and 1.5,

respectively. All the figures show that higher-order contrib
tions are small except near the ends of the chain. In o
words, the bulk behavior is unchanged, where the temp
ture profile near the ends of the chain exhibits various
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pendencies on the details of the parameters (TL ,TR ,a).
When the reservoirs are Ohmic, the temperature profile n
the ends are similar to those obtained by ZT with the qu
tum Langevin approach.

When the reservoirs are Ohmic and temperature is h
@Fig. 2~a!#, temperature drops near the left end which co
tacts with the hotter reservoir and rises near the other
contacting with the colder reservoir. This is the same pa
doxical behavior as found by RLL and also observed by Z
Such behavior disappears when the reservoirs are su
Ohmic @Fig. 3~a!#. The second particles from the ends sho
monotonic temperature variation.

Figures 2~c! and 3~c! exhibit temperature profile when th
temperatures are low where quantum effects are import
These two figures almost coincide. In both cases, temp
tures near the ends are high which should be due to

FIG. 2. Temperature profile along the chain fora51.0: ~a! TL

5200.0,TR550.0; ~b! TL510.0,TR50.1; ~c! TL50.1, TR50.02.
The system size isN5150.
ar
-

h
-
d
-
.
er-

nt.
a-
e

quantum fluctuations. We may say that differences in
spectral densities does not affect the temperature profil
low temperatures. In the medium temperature cases, F
2~b! and 3~b!, mixed behavior of the classical and quantu
features are observed.~See also the figures in Ref.@4#.!

For TL5200.0 andTR550.0, temperature deviations o
particles 2 and (N21) from the mean internal temperatu
are plotted in Fig. 4 for variousa. There we find that the
peculiarity, i.e., inversion of temperature near the ends
observed in the sub-Ohmic and Ohmic cases, while it dis
pears whena>ac(.1.04).

B. Fokker-Planck equation in the classical limit

In the previous subsection, the temperature profiles
found to depend on values ofa. In particular, the peculiarity
found by RLL @3# disappears in the super-Ohmic regim

FIG. 3. Temperature profile along the chain fora51.5: ~a! TL

5200.0,TR550.0; ~b! TL510.0,TR50.1; ~c! TL50.1, TR50.02.
The system size isN5150.
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Since the differences are seen at high temperatures, s
characteristics depending on the valuesa must appear in the
Fokker-Planck equation obtained from the master equatio
the classical limit. Actually, we will find that the diffusion
term in the Fokker-Planck equation takes a different fo
from that derived from the Langevin equation except in
Ohmic case. In order to study the difference in relaxation
the contacting point, we investigate the Fokker-Planck eq
tion for a system with a single reservoir.

When a heat reservoir is attached to the left end of
chain, the classical Langevin equations for canonical v
ablesxn(t) andpn(t), n51,2, . . . ,N are

]xn

]t
5$xn ,H%, ~4.12!

]pn

]t
5$pn ,H%2dn,1n

pn

m
1dn,1j~ t !. ~4.13!

where $•,•% means the Poisson bracket. The correlat
function of the Gaussian white random forcej(t) is con-
nected with the damping constantn and the temperature a
the first particleb via the fluctuation-dissipation theorem a

^j~ t !j~ t8!&5
2n

b
d~ t2t8!. ~4.14!

As is well known, the Langevin equations are equivalent
the Fokker-Planck equation

]P~ t !

]t
5$H,P~ t !%1n

]

]p1
S p1

m
1b21

]

]p1
D P~ t !,

~4.15!

whereP(t) is the distribution function on the phase spac
We now turn to our master equation. Inserting the rep

sentation for operatorRL ~3.15! into the master equation
~2.6!, we have

FIG. 4. Deviations of the temperature at particle 2 and part
(N21) from the mean internal temperatureTav. The temperatures
of the reservoirs areTL5200.0 andTR550.0. Thus,Tav5125.0.
me

in

e
t

a-

e
i-

n

o

-

]r~ t !

]t
5

1

i\
@H,r~ t !#2

pm

A8~N11!m\v0

3(
k

sink

Asin~k/2!

I ~vk!

sinh~b\vk/2!

3$@x1 ,~eb\vk/2ak1e2b\vk/2ak
†!r~ t !#

2@x1 ,r~ t !~eb\vk/2ak
†1e2b\vk/2ak!#%,

~4.16!

where we omitted suffix L. Expressing the creation and
nihilation operators by the position and momentum opera

]r~ t !

]t
5

1

i\
@H,r~ t !#2

pm

~N11!\ (
k,n

I ~vk!sink sin~kn!

3H cothS b\vk

2 D †xn ,@x1 ,r~ t !#‡

1
i

2mv0 sin~k/2!
$pn@x1 ,r~ t !#

1@x1 ,r~ t !#pn12@x1 ,pn#r~ t !%J . ~4.17!

In the classical limit, the density matrixr(t) is replaced by
the distribution functionP(t) Therefore, Eq.~4.17! is trans-
formed into

]P~ t !

]t
5$H,P~ t !%1 (

n51

N

Cn

]

]p1
S pn

m
1b21

]

]pn
D P~ t !,

~4.18!

where

Cn5
2m

v0
E

0

p

I „2v0 sin~k/2!…cos~k/2!sin~kn!dk.

~4.19!

The time-evolution equation for the covariance matrix d
rived from Eq. ~4.18! is also confirmed to agree with th
classical limit of the corresponding quantum equation.

e FIG. 5. CoefficientsCn as a function ofn for various values
of a.
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When the reservoir is Ohmic, namely,I (v)5I 0v, the
coefficientsCn are evaluated as

Cn5pmI 0dn,1 , ~4.20!

and Eq.~4.18! agrees with the Fokker-Planck equation d
rived from the Langevin equation~4.15!. In this case, the
two-point function~2.10! tends to the delta function in th
classical limit

lim
\→0

F~ t !5
2pI 0

b
d~ t !. ~4.21!

Therefore, we find that the correlation function of the no
is white in the Ohmic case, which is consistent with t
Langevin equation~4.13!.

If the reservoir is sub-Ohmic or super-Ohmic, howev
Cn does not vanish forn>2. Figure 5 showsCn as a func-
tion of n for various values ofa. The sign ofCn (n>2) is
positive in the sub-Ohmic regime and negative in the sup
Ohmic regime. The difference in temperature profiles d
cussed in the previous subsection should be explained by
a dependence of the coefficientsCn .

V. SUMMARY AND DISCUSSION

We investigated the effect of the types of reservoirs on
thermal conduction in the harmonic chain. We derived
master equation for a general many body system in con
with phonon reservoirs. In a many body system, the diss
tion term is different from one of one-particle system due
the noncommutability of many body interaction, so that t
dissipation term has rather complicated form. However,
have the explicit form for the dissipation terms~2.16! and
~2.18!. We used it as the basic equation to study behavio
the system. The equation generally satisfies the neces
condition for the master equation that the canonical distri
tion must be a stationary solution when the reservoirs ar
the same temperature.

In Sec. III, we have applied the master equation to ene
transport in the quantum harmonic chain. We attached a p
non reservoir at one end and another at the other end
weak coupling limit ~l→0!, we obtained explicit form of
internal energy and energy flux. We rigorously proved t
when the spectral densities of the reservoirs are of same t
the total energy of the system takes the arithmetic mea
the equilibrium energies atTL andTR regardless of the type
of the spectral density. This result leads to the classical t
perature (TL1TR)/2 which is originally found by RLL using
the Ohmic type of reservoir. On the other hand, when
types of spectral densities are different, the internal temp
ture is a function of the both densities, so that the tempe
-

e
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ture does not converge to (TL1TR)/2 in the classical limit.
The difference of spectral densities induces the deviation
temperatures around the both edges from the internal va
The temperature in the vicinity of both ends become close
the temperature of the reservoir whose spectral density
larger power. We numerically confirmed that this feature
general when the reservoirs are of different types.

We numerically investigated the effect of finite couplin
We considered only the case of the same spectral densitie
the reservoirs. Finite coupling contributes to the temperat
profile only near the ends of the chain and bulk behavio
the same as that of weak coupling limit. We found that t
profile near the ends depends on the spectral density for
reservoirs. When the reservoir temperature is sufficiently l
where quantum fluctuations are dominant, temperat
growth near both the ends was observed in every case. W
the reservoir temperatures are high enough and the rese
is sub-Ohmic or Ohmic, the same peculiar behavior, i
nonmonotonic change of the temperature, is observed
found in Ref.@3#. However, in the case of super-Ohmic re
ervoir, the peculiarity disappears.

In order to understand the dependence on the spe
density, we derived Fokker-Planck equations from the m
ter equation in the classical limit. If the reservoir is Ohm
the Fokker-Planck equation agrees with the standard one
rived from the Langevin equation. When the reservoir
non-Ohmic, however, there appears difference in the di
sion term, i.e., the form of the second derivative. The co
ficients of the diffusion terms were calculated from the sp
tral density. This difference causes different temperat
profiles near the ends of the chain.

We expect that the master equation derived here can
used for other systems such as spin systems for which
Langevin approach is practically difficult. In the case of t
harmonic chain, operatorR was written in a simple form by
using some system operators. Thus we were able to ana
the master equation systematically. This can be done bec
the harmonic chain is integrable. Thus, similar procedure
be developed for other integrable systems, e.g., theXYmodel
@21#.

In this paper we have confined ourselves to the integra
system. However, the master equation derived here is ge
ally applicable to any system because the matrix elemen
R is explicitly given. Thus it would be an interesting futur
problem to study the thermal conductivity in nonintegrab
system where the Fourier heat law is realized@2#.
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