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Energy transport in the integrable system in contact with various types of phonon reservoirs

K. Saito
Department of Applied Physics, School of Engineering, University of Tokyo, Bunkyo-ku, Tok@6363Japan

S. Takesue
Faculty of Integrated Human Studies, Kyoto University, Kyoto-&B®1, Japan

S. Miyashita
Department of Applied Physics, School of Engineering, University of Tokyo, Bunkyo-ku, Tok@6363Japan
(Received 8 October 1999; revised manuscript received 30 Jung 1999

We study how energy transport in an integrable system is affected by the spectral densities of heat reser-
voirs. The model investigated here is the quantum harmonic chain with both ends in contact with two heat
reservoirs at different temperatures. The master equation for the reduced density matrix is derived on the
assumption that the reservoirs are composed of an infinite number of independent harmonic oscillators. We
evaluate temperature profile and energy flux in the stationary state for the master equation and discuss how
they depend on the types of spectral densities. When we attach the reservoirs of the same type of spectral
density, we find that the temperature profile is independent of the types. On the other hand, when the two
reservoirs have different types of spectral densities, the energy profile near the ends of the chain depends on the
types. When the coupling is finite, the temperature profile near the ends shows a wide variation of behavior
dependent on spectral densities and temperatures of reservoirs. This dependence is discussed with the Fokker-
Planck equations obtained in the classical limit.

PACS numbgs): 05.60—k, 05.30—d, 05.70.Ln

I. INTRODUCTION profile in the vicinity of the ends of the system shows some

variety depending on temperature and a damping constant.

Generally Integrable sy_stems ShOW_ abnormz_al energy The reservoir employed in these studies is only the Ohmic
transport, namely, the Fourier heat law is not realized ther

[1,2]. This attributes to the lack of scattering between modes(f:,ylc?e'_whICh 'S one of th? possible three types of heat reser-
) i . o . "vairs: sub-Ohmic, Ohmic, and super-Ohmic. Because inte-
which should be induced by nonintegrability. Two typical rable systems have no scattering between modes, their non-

characteristics are seen in the energy transport in integrab% Y 9 !

systems. One is energy flux per unit volume independent 0(:f\qumbnum behavior will be easily affected by the types of

. ) ) .-reservoirs at the boundary. Thus in this paper, we investigate
the system size. The otherlls a flat temperature profile W'trﬁow nonequilibrium natu¥e in the harmF:)nliDc chain depegds
no_?rI]Obﬁl temp_erat#r_e grad|ent: i bl hi on the types of reservoirs. Here we derive the master equa-

e harmonic chain is a typical integrable system whichyjo, tor the reduced density matrix through the projection

shows these characteristi¢8—7]. Rieder, Lebowitz, and yperator method on the assumption that the reservoir is com-
Lieb (RLL) investigated the classical harmonic chain Whoseposed of an infinite number of independent harmonic oscil-

ends are in contact with heat reservoirs at different tempergators. This method is valid in the weak coupling limit and
tures[3]. They exactly evaluated the covariance matrix of thefor slow motion of the system because it treats the second
variables in the stationary state using the Langevin equatiorprder perturbation with respect to a coupling constant and the
and they proved these characteristics. That is, they found thagarkovian approximatio9].
energy flux per volume is proportional to only temperature We investigate the effect of the spectral density on the
difference and is independent of the system size, and ntemperature profile and energy flux in the quantum harmonic
global temperature gradient is formed. Although the tem-chain in contact with two reservoirs applying the master
perature profile is flat in the internal region, they found theequation for reduced density matrix. At the weak coupling
peculiar behavior in the vicinity of the ends of the chain.limit, the stationary state can be obtained analytically, and it
Namely, the local temperature lisgher than the bulk value is found that when the two reservoirs have the same type of
near thecolderreservoir, andower near thenhotterreservoir.  spectral density, the temperature profile is independent of it,
Zurcher and Talkner(ZT) [4] investigated a quantum and the profile is the same as the result previously reported
model corresponding to that of RLL with use of the quantum[3,4]. On the other hand, when the spectral densities are of
Langevin equatio8]. As for the bulk behavior, they found different types, the temperature profile depends on the types.
the same features as in the classical case. That is, no glob&alen in the classical limit, the internal temperature deviates
temperature gradient is formed and energy flux is indepenfrom the mean value of the temperature of the reservoirs and
dent of system size. In the high temperature limit, the quanwe observe a deviation of temperatures around ends from the
tum Langevin equation is reduced to the Langevin equationemperature of internal region. The direction of deviation is
with the Gaussian white noise and all the characteristics obdetermined by frequency dependence of the spectral density
tained in Ref[3] are reproduced. However, the temperaturenear w=0.
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We also investigate the reduced density matrix with finitewhere A is a coupling constant angt,s and\’ are some
values of the coupling constant numerically. Although it isconstants. We put the second term in the right hand side in
derived in the perturbation of the coupling constant and it isorder to make the total Hamiltonian to be boun@&8]. This
only valid in the weak coupling limit, we dare regard the term is regarded as a part bif
master equation with a finite coupling constant as a model

for a time evolution with a dissipation. In other words, we ¥2
assume that the time evolution qualitatively represents a kind H—H+\ ’22 4_“X2_ (2.4)
[e3 wa

of real phenomena in nature, where the coupling constant
represents the strength of the dissipative mechanism. We
study qualitatively the dependence of temperature profile ofy, this section, we do not make any assumption for the sys-
the types of reservoirs. It even has been reported in som@m, though we consider a harmonic chain for the system in
cases that the reduced density matrix with a finite couplinghe next section.

can produce a good long time behavior of the system in e derive the master equation for the reduced density
comparison with the exact path-integral result not only qualimatrix following the standard methd8]. We start from the

tatively but also quantitativelj/10]. o guantum Liouville equation for the total system
The temperature profile at the ends of the chain is found

to depend on the spectral density and the temperatures of the

reservoirs even when reservoirs at both ends have the same IProt) :i[Htot ProfD)] (2.5
type of spectral density. The dependence on the types of the at if

reservoirs is discussed in the Fokker-Planck equations in the

classical limit. wherep(t) is the density matrix for the total system. Under

This paper is organized as follows. In Sec. Il, we derivethe condition that the reservoir is initially in the equilibrium
the master equation for the reduced density matrix of a genstate at inverse temperatyge the degrees of freedom of the
eral many body system in contact with a phonon reservoiryeseryoir are traced out with the aid of projection operators.
Section 1l is devoted to the investigation on energy ransporin order to obtain an equation which can be solved practi-
in the harmonic chain coupled to the phonon reservoirs aga)ly, we usually expand it up to second order with respect to
weak coupling limit. In Sec. VI, we consider the case of\ ang also adopt the Markovian approximation, which is
finite coupling and investigate corresponding Fokker-Planck;ajig when correlations between the reservoir's variables are
equations. Summary and discussions are given in Sec. V. ghort-lived. As a result we obtain an equation for the reduced

density matrixp(t) =Trg pioi(t) (Trg means the trace con-
Il. THE PHONON RESERVOIR cerning the reservoir's degrees of freedoof the form

A. Master equation for reduced density matrix

. : - ; d 1
In this sub§ect|on,.we derive the_master equ_atlon for the —p(t)Z?[H,p(t)]—)\zrp(t), (2.6
reduced density matrix of a system in contact with a phonon at I

reservoir. Let us consider the following total Hamiltonian

Hiot: whereT'p(t) is given by
Hix=H+H;+Hg, (2.2
1 © © o,
whereH denotes the Hamiltonian for the system of interest, Ip(t)= —zf dt’f dwe't ®(w)
Hg denotes the Hamiltonian for the reservoir, dfg; de- h=Jo o
scribes the interaction between the system and the reservoir. SIXX( =1V (1) — eBhOX p(1)X( =t
We assume that the reservoir consists of an infinite number PXX=e(®) P(HX(~1)
of mutually independent harmonic oscillatdikl—14, that +eProp(t)X(—t)X=X(—t")p(t)X}. (2.7
is,
2 Pi mawixi 2 . o 1 s IntI,Eq.(2.7), X(—t') means the Heisenberg operator at time

Hg= 2 2ma+T— 2, frwg| by, a+§ . (2.2

whereb! andb, are the creation and annihilation operators X(—t')=e Ht'lhxgHt'/h (2.9

for the ath mode. We assume a linear coupling between a

Hermitian operator of the systekand reservoir’'s operators and the functiond(w) denotes the Fourier transform of the

in the form two-point function of the reservoir's operators coupling<o
12 2 namely
m[le[ 7& !
e + 12 T N2
Hint ; x( 5 ) YoX X+ N ; G X

1 (=
7 D(w)= Ej e 1l (t)dt, (2.9
=MVAY, yu(bl+b)X+N"2Y EXZ (N'=N), -

a

(2.3  where®d(t) is given by
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1 E,—E,,
<I|R|m>:%XI,m(D ﬁ
| EI_Em . _EI_Em
1 f
_%xl’m eB(E~Em) 1 - (219

ThenT p(t) is written in the following compact form:

ar
Hence, denoting the reservoir's density of states with respect I'p(1)= 2-[XRp(t) =Rp(1)X~ Xp(H)R"+p(t)RTX]

to frequencyw by D(w), we can writed(w) as

D(w)—D(—w)

() =hy(0)

(2.10)

where we introduced a smooth functiofiw) that satisfies
y(*w,)=1v,. Here we define the spectral densifw) as

l(w)=¥(0)?D(w). (2.12
The following form for the spectral density is considered in
the literature:

[(w)=lgw“0(w), (2.13
where f(w) is the step function:#(w)=1 for =0 and
Hw)=0 for w<<0. The reservoir is called Ohmic i&#=1,

sub-Ohmic ifa<1, and super-Ohmic ifv>1[13].
In the following we rewrite Eq(2.6) in a form convenient

—Z{[X,Rp()]+[X.Ro(1)]"). (217

Thus we arrive at the master equation of the form

% +
[H.p(0)]= 5 {[XRe(D ]+ [X,Rp(D)]'}.

(2.18

dp(t) 1

a ik

This is a generalized Lindblad forfii6,17 treating general
many body system with the coupling for(@2.3). When the
system has many body interactions, the noncommutabilities
cause the operatdt to contain all degrees of freedom of the
system even iH;, is a part of the system. Thus, in geneRal
has a complicated form with all degrees freedom of the sys-
tem. Nevertheless, E@R.16) gives the explicit and compact
form of R for the general systems when the reservoir is given
by Eqg. (2.2). Thus we can expect that the master equation
(2.18 is widely applicable for the concrete studies of many

for later use. Let us consider the matrix components of OPpody systems.

eratorl"p(t), (k| p(t)|n), where|k) and|n) are eigenstates
for the system Hamiltoniatd with energy eigenvaluek,
andE,,, respectively. For the integral with respecttto we
use the mathematical formula

° [
f e"’tdt=775(v)+73;, (2.14
0

neglecting the principal valug¢9,18,19 and the Kubo-
Martin-Schwinger (KMS) condition ®(w)e’"*=d(— w).
Then, the matrix components of operatgs(t) is written as

E—En
<k|Fp(t)|n>: ﬁ% % [Xk,lxl,mq)(lT> pm,n(t)

E,—E
—xk,m',m(t)x:,m@(%)

Em EI

h

+Pk,|(t)X:1,I(I)( )Xm,n

E.—E,
—) pl,m(t)xm,n}- (2-15)

_Xk,lq)( 7

Now we introduce the operat® whose matrix elements
are

In the present study this master equation is used as a basic
equation for a system coupled with the phonon reservoir. It is
readily checked that Eq2.18 satisfies at least a necessary
condition for the master equation, i.e., the canonical distri-
butione M/ Tr(e” A1) into p in Eq.(2.18 gives a stationary
solution. We also expect the stability of the stationary solu-
tion at least when is small enough.

B. Comparison with the quantum Langevin dynamics

Here we briefly review another type of equation repre-
senting quantum dynamics with a thermal environment that
is called a quantum Langevin equation which was used in
previous studief4] and compare it with the master equation
for reduced density matri@2.18 (see also Ref.15] for other
types of quantum Langevin equations we no not explain
here.

The quantum Langevin equation was introduced by Ford,
Kac, and Mazuf8]. They considered the following coupled
oscillators composed of N+ 1 particles:

N

N
1
H=3 2 p§+§ E qum,nqm (2.19
n=-N mn=-N

whereq, and p, are theith canonical coordinate and mo-
mentum variable, respectively. The matdx=(A,, ) is a
(2N+1)X(2N+1) symmetric matrix whose elements are
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voirs at different temperatures with various types of spectral
. density of the thermal reservoir and examine what is com-
mon with and what is different from the results in the clas-
(220 gjcal casq 3] and also the quantum capg with the Ohmic
(?spectral density. We first discuss the case of weak coupling
imit.

N
1 2wk
_ 2 - B
Amn=oN+1 k;N “’kexr{' N1 M

It should be noted that the eigenvalues of this matrix ar

wg (s=—N,—N+1,... N=1,N). The authors assumed

that the initial state of the syste(@.19 is in equilibrium at

a temperature, and examined under what condition the be- A. System

havior of particle 0 can be described by a Langevin equation. Here we take the one-dimensional quantum harmonic
They found the following. If the eigenfrequencies of the chain

whole systenwg, have the special form )

N N Mw
0
(2.21) H=n§1 _m+n§0 2 (Xn+1—Xn)? (3.1

TS
2N+1

w§=f2tal’\2

) ) ) o as the system. This Hamiltonian should be considered to be
the motion of a particle of the system in the equilibrium stateihe renormalized Hamiltonian including the second term in

is described by Eqg.(2.3. As in Ref.[3], we impose the fixed boundary con-
300(1) dition, Xxo=Xy+1=0. By Fourier transformation
O p—

ot Po. (2.223 \/TZ .
Xp= m . uksm(kn),

= —fpo+E(D), (2.22b

dpo(t)
ot 2

_ _ , Pa=\ g1 vksinkn), (3.2
whereqq, po, andE(t) are operators in the Heisenberg pic- k
ture. The operatdE(t) is described by operators of particles.
In the equilibrium stateE(t) behaves as the Gaussian ran-
dom force with vanishing meagE(t))=0, where(---) v2  molu?

means Tr(exp-BH{g;(0)},{pi(0)H]...)/Z. It also satis- H=>, —+ > (3.3
fies the commutation relation

the Hamiltonian is decoupled into the normal modes as

P where wy=2wqsink?2). The wave numbek runs through
[E(t),E(s)]=2iAaf—6(t—s) (2.23  thevaluek=n//(N+1) (#/=1,2,... N—1,N). It is eas-
Jt ily found that operatorsi, andv,, satisfy the commutation

. . relations for canonical variables
and has the symmetrized correlation

1 [ukrvk’]:ihﬁk,k’ and [Uk,uk/]:[vk,vk/]zo
E<E(t)E(t+ )+ E(t+7)E(1)) (39

ot . and introducing the creation and annihilation operam}s
== w cotk{ﬂz codwr)dw.  (2.24 anda, in the ordinary manner
0

B IMwq sin(k/2) vy
This dynamics yields a classical Langevin equation with A= f Uit 2Mwg Sin(k/2)

Gaussian white noise in the classical limiit-0.
This dynamics has been applied to the quantum harmonignd
chain and investigated some quantum effects in energy trans-

port phenomen®4,7]. However, strictly speaking this quan- +_  [Mawgsin(ki2) [ vk

tum Langevin equation is the dynamics for a simple particle &= h Uk 2mwqsin(k/2) )’
system in an equilibrium state. Therefore this dynamics is

not consistent with a nonequilibrium dynamics for manywe obtain

body system in principle. The master equation for reduced

density matrix(2.18 is derived for a general many body H:z ho
system on the assumption that only the reservoir is in equi- K K
librium. Thus the master equatid@.18 is more suitable in

this context.

L1
akak+ E

. (3.5

B. Equation of motion of the system which contacts

with two different reservoirs

[lI. ENERGY TRANSPORT IN THE QUANTUM d d ibe th h d hed
HARMONIC CHAIN AT THE WEAK COUPLING LIMIT In order to describe the system whose ends are attached to

phonon reservoirs at different temperatures, we set dynami-
In this section, we investigate energy transport in thecal model where the contacts with thermal baths are taking
quantum harmonic chain in contact with two phonon reserinto account by the dissipation terms of the forms in Eg.
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(2.18. That is, variables at the left-end and right-end points E—E, E—En

X1 andxy are linearly coupled with one phonon reservoir at IR( )— R( - )

inverse temperaturg, and Br, respectively. (I|RglmMy= - (Ixpn|my,
We assume that the coupling strengttand the form of efrEEm —1

the couplingy,, in Eq. (2.3) are common for both the reser- (3.8b

voirs. Then the master equation for the reduced density ma-

trix Is written as andE, denotes the energy eigenvalue for sfje |, andlg

P 1 are the spectral density of the left and the right reservoir,
—P(O=[Hp(0]-ulLp()—uTrp(t), (3.6)  respectively. |

To solve this equation, we need to express the operators
R, andRg in terms ofa, and al. The operatorx; andxy

whereu=\2. In principle the form of the dissipation terms 3
are written as

of Eq. (2.18 is derived in the condition where the system is
coupled only to one reservoir. Even when the two different

reservoirs are contact with the system, the decoupled form of 7 sink

the dissipation term in Eq3.6) is valid in the order of\2. X1= \ / (ay+a)) (3.9
From Eq.(2.18 the damping term& p(t) andT'gp(t) are 2(N+1)mwo K /sin(k/2)

FLp(t)= 24D, Rup(0]+ % Rup(0]') and

and (3.7

. / % 5 sinNK) N 310
NTON2(N+1D)mop % \/sin(k/2)(ak A 1S

respectively. Here operatof§ andRg are defined through | et |n,) denote the eigenstate for the number operatas,

Frp(t)= 7 {[%,Rep(D)]+ [y Rep(0]'h,

the matrix elements with the eigenvaluen,, namely ala,/n)=nyn,). The
E—E E—E eigenstates for the system Hamiltoni@5) are given by the
,_( : m) — ,_( - m) direct product of number state) as |[{n,})=TII,|ny),
whose energy eigenvalue B{({n,}) == (ny+ 3) A wy.

(IR [m)= (1x/m), . =k
The matrix elements oR_ are given in terms of the

(3.89  eigenstate${n,}) as

/ h sink
<{nk’}|RL|{mk’}>: 2(N+1)mw02k \/SH’](TZ)

E({{ne})— E({mk’})) . ( ~ Edneh) —E({me})

e.BI_(EI_ Em) — 1

I

e maadmi) + Ul mi )
(3.1
Now we note that
{niHa{me})#0 onlyif ne=mg -8 for Vk, (3.12
{netall{me})#0  onlyif no=mg+8, for VK, (3.13
andl(w)=0 for w<0. Then Eq.3.1)) is transformed into
; fiw
({niHRU{M ) = \Y} 2(N+ﬁ1)mwo; It/(sc;)r;%k eﬁej:k_k1<{nkf}|ak|{mkr}>+ﬁ@w}laﬂ{mm .
(3.14

Thus the operatoR, can be represented as

/ h sink I (wy)
— Bl w2 —BLhwgl24T
R 8(N+1)mwo; Vsin(k/2) Sinh(BLﬁwk/Z)(e Hacte T Ta). (319

In the same manner, the operaRy is represented as
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B 3 sin(Nk) Ir( @) Brh w2 — Brhwg2aT
Ry= \/8(N+71)rncuo§k: ST sinf(,BRﬁwk/Z)(e W2a, +e Keay). (3.16

C. Moments in the stationary state

As will be shown later, to evaluate mean kinetic energy of a particle and energy flux in the stationary state, we have only
to calculate the second moments

(@) =Tr(agax psy (3.17
and
(afa)=Tr(atawps), (3.18

where pg; denotes the stationary solution of E§.6). First, we consider Eq.3.17). Because the left hand side of Hg.6)
vanishes in the stationary state, we obtain

1 T N
ETr(akak’[Hap])_ T[Tr(akak’[xl1RLPST:|)+Tr(akak’[xerLPst] )]
m +
- T[Tr(akak'[XN \Rrp]) + Tr(ayay [Xn,Rgrp]') ]1=0. (3.19

This equation is rewritten as follows after tedious but straightforward calculations:

T sink, I (@)

4(N+1)mawo %G /sin(k,/2) SINN(BLTwy [2)

i(a)k+ wkr)<akak,> +

sink’
X [ ————[eP W ((aay )~ (af a) +e P ((aal ) — (ay,a)]

vsin(k’/2)

ink
+ —sTrllr(]k/Z) [efihor/2((ay, ay,)— <aﬁlak, )+ e*BLhwkl/z«ak,aIl) - (aklak,))]’
n T sin(NKk;) IR(wkl)
4(N+1)mwo %7 \sin(k,/2) SINN(Brfiwy /2)

sin(Nk")
X [ %[eﬁﬁlwklﬁ“akakﬁ _ <allak>) + e—ﬁRﬁwk1/2(<akall> _ <ak1ak>)]

in(Nk)
N ssnl"l(n( = [eBrion/2((q,, )~ (allak,>) +e Brho2((a,, aL} - (aklak,>)]] =0. (3.20

In the same way, E(3.18 is also transformed into

i Wajae)+ T sinky (o)
| r— a, .y i
Ok ORAKE T ZINF Dmwe & Jsinke2) sinh(BL 7wy /2)
y sink [eﬁLﬁ‘”k/Z«aTa y—(apa >)+e*ﬁ|_ﬁwk/2(<a a)y—(a al N
Vsin(k/2) =8 Q) T (S g AR
SINK' B2yt t ot Bt /2ol ot t
(e ala) (el al) e A Calal,) (a2
- sin(NKk,) Ir(w,)

+ -
AN+1)mawo 4G \/sin(k,/2) sm}‘(,BRﬁwkl/2)



PRE 61 ENERGY TRANSPORT IN THE INTEGRABLE SYSTEM ... 2403
sin(Nk)
X ———[efrmox/2((al a,.)—(a.a ) +e Priew2((a, a.)—(a.al ))
sin(k/2)[ (A aw) —(akrax,) C((ag,an) —(away )]
sin(Nk’)
+ ———[efrion/2((ala, V—(al a}))+e Ariox2((alal V—(a,.al))]{ =0. (3.20)
—sin(k’/Z)[ ((aka,) —(ay,a) (@)~ (ak,ax) ]
|
D. Total energy E; hwy
- - i - Eq=Tr(Hpsd =2 7
We will solve these equations by perturbation. Expanding © | (o) +1r(wy)
(aa,) and(aja,) with respect tou,
5 I (@) I r(@y)
(akakr) =&k Yo+ ulakak)1+ u(akay )+ o1 1| (3.32
(3.22
In particular, whenl| (w,) =Ir(wy), we find thatEg is the
taty_yatal ot Tt . . LA = TRACK st
(@) = (ax@y ot mlagag )a+ pX( @@y )t - -, arithmetic mean between equilibrium energy at inverse tem-
(3.23 peratureB, and atBg regardless of the types of the spectral
N T T 01 density, i.e.,
(aaw) = (aak o+ m(aa )1+ u(@dg ot -,
(3.29 1 Tr(He Ay Tr(He #=H)
T f T t 2| Tre AuH Tre BsH | (3.33
(@) =(a@y ot m(a@ )1+ uX(@@g )2t -,
(3.295

we consider the relation of each orderof Using the com-
mutation relations

(@ )n=(aw an,
(afayn=(ap,al)n,
(3.26

we obtain the following relations at the zeroth order:

1 T
(@ )n= (@ ant noSk Kk »

(wk+wky)<akakr>o=0 and (wk,—wk)<alaky>o=0.

(3.27
Accordingly we have for alk andk’
(& )o=0, (3.28
and fork#k’
(afa)o=0. (3.29

Puttingk=k' in the first order equation gk, we have

Sirt Kl (wy)
T RARK) B w2y At A BLhwy2 +
Sinl,(BLﬁwk/z) (e Lk <akak>0 e PLoK <akak>0)
SI(NK) | g(wy)
Brh w2/ 4T
S Baiad2) & (@0
—e PRIW2(g,al)o) =0. (3.30
Since sikk=sir?(NK)#0, Eq.(3.30 leads to
1 I (wy) Ir(wy)
+ _ L k R\ Wk
(B0 (o) Tn(wn) | ephon—1 * epeton—z]” &3P

Here the energy of the system is

E. Kinetic energy of a particle and energy flux

Here we compute mean kinetic energy of each particle
and energy flux up to the first order with respectutoThe
mean kinetic energy of theth particlee,, is defined by

En= 2m - 2mp5t ’
which is expressed in terms of the creation and annihilation
operators as

_ﬁwo
TN+1

(3.39

2 vsin(k/2)sin(k’/2) sin(kn)sin(k’n)

k,k’

€n

X () — (aay,) — (afaw) +(afal.).  (3.39

Substituting the results obtained in the last subsection into
the above equation, we have

sin(k/2)sir?(kn)(2(ata,)o+1)

wo
en=——
" N+1 K

_ ﬁ(,!)o X X
“No1 ; sin(k/2)siré(kn)

{'L(wk)HR(wk)

|
T CUN
eﬁRﬁ‘”k—l

In the classical limit, Eq(3.36) becomes

I (wy)

X
eBLﬁ‘“k— 1

(3.39

I (wy)

_ﬂf” - G
2e,= i dksmz(kn)lL(wk)HR(wk)

Ir(wy)
I (o) +1r(wy)

whereT = ,8[1 and TR=,8§1 are the temperature values of
the left reservoir and the right reservoir, respectively. In the

+@desin2(kn) (337
7 Jo
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150 Energy flux is defined via the equation of continuity.
145 | . From the master equatiai3.6), the time derivative for the
149 L @ | energy of the system satisfies
135 | 1 P
180 | 1 St MIHp(O]==Tr[uHE p(O]=Tr[uHIrp(D)]. (3.38
& 125+
120 |& The first term in the right-hand side is regarded as incoming
115 Lo ol energy flux from the left reservoir and the second term in-
coming energy flux from the right reservoir. We call the
1o formerJ, and the lattedg. In the stationary state, of course
105 ¢ 1 J%4 J=0 must hold. We can calculat§' as follows:
100 Il Il Il 1
1 3 o« N30 N T .
J¥'=———Tr(H[x,,R_p]+H[X;,R
150 L 5 (H[x1,RLp] [x1,RLp]")
122 | A _ mhp I ()| r(wy)
' ® (NFDM % T (w0 +1x(w)
135 o o
130 o o 1 1
< | —— mmm— | X - . (3.39
= 125 eBLh“)k—l e.BRh“’k—l
120 t ;
115 | ] If N>1, we can replace the summation by an integral and
110 1 obtain
105 | ] a_fp (7 1L(@lr(0y)
100 4 — — : bom Jo I(@i) +Tr(wy)
1 30 n N-30 N 1 1
FIG. 1. Temperature profile along the chain fof=200.0, X sir? k( o1 BRﬁwk_l)dk- (3.40
TR=50.0: (8 I (»)= " and I x(w)= w5, (b) I (w)=w'® and e e
— .05 H iN| —
Ir(0)= ™" The system size ibl=150. In the classical limit £ —0), J{' goes to
classical limit, 2, can be interpreted as the temperature at J=pC(TL—Tr), (3.41
site n. Especially when both the reservoirs are of the samgyhere
type, namely,l (o) =1g(wy), we have 2,=(T +Tg)/2 1 = sirtk
regardless of the types of the spectral density. This means ¢= —| —
completely flat temperature profile, which was originally Mawo Jo SIN(k/2)
found by RLL when the both reservoirs are of the Ohmic ; :
L Rwgsin(k/2)I g(2wqg sin(k/2
type [3]. On the other hand, E43.37 shows that the tem- X (2w Sin(k/2))lg(2wo Sin(k/2)) dk.  (3.42

perature profile in integrable systems can be easily changed IL(2wosin(k/2)) + I r(2wosin(k/2))
by controlling the combination of the types of spectral den-Thys in the classical limit, energy flux is proportional to the

sity of reservoirs, so that in the casele{wi) #Ir(w\), the  temperature difference and independent of the system size
internal temperature deviates from (+ Tg)/2 in the classi- regardless of the types and the combinations of the spectral

cal limit. densities of reservoirs.
We numerically estimate E¢3.36) to investigate the gen-
eral feature of temperature profile for various combinations IV. FINITE COUPLING

of spectral densities. We present typical temperature profiles

in Fig. 1. In Fig. 1a) we take the sub-Ohmic type reservoir The master equatio2.19 is justified only in O(x).

. ; . T However, when we study the model with a finite coupling
IL:“.’OSfor. left 5|de_, and the super-Ohmic ohg=w"* for constant, the quantitative effect of a finite coupling inevita-
the 1”59ht side. IQSF_'Q' (b)', the converse case, namely, bly deviates from those of the original model. Nevertheless,
=w>>andlg=w™"is considered. In both the cases, param-jme eyolution of the reduced density matrix has been re-
eters are set tn=7%=wo=1.0, andT =200.0,Tg=50.0.  garded as describing a variety of relaxation processes, and it
As is known from these figures, temperature deviates frongyccessfully explained a variety of interesting phenomena in
the internal temperature value in the same direction in theeal system§18,20]. This shows that the master equation can
vicinity of both the ends. As the result the deviated temperawell approximate the dynamics in real dissipative system at
ture values become close to the temperature of the reservdiast qualitatively. In some cases the time evolution of the
whose spectral density has larger power. We numericallyeduced density matrix with a finite coupling reproduces
confirmed this dependence for many sets of spectral densitiegiantitatively correct results even for long tin{d€].

(I.,Igr) and temperaturesT( ,Tg) including low tempera- Thus we investigate here the effect of finite coupling
tures. which is a small but finite value, and discuss the behavior of
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temperature profile qualitatively. In this section, we confinelf k=k’,
ourselves to the case of the same spectral density at both
ends, namely, i

ajan 1= PORIES!
(4.2 (@idn 2(N+1)meg(wr — wk) k1 “

I L: I R: I .
sink; sink’ + sin(Nk;)sin(Nk")
Vsin(k/2)sin(k’/2)

A. Temperature profile

We evaluate contributions from higher-order terms and

find deviations from the flat temperature profile near the ends X ({(afay Yn—(akae )*)
of the chain. We first calculate the first-order coefficients. ! n
From the first-order equations in E¢8.20 and (3.2, we sink, sink+ sin(Nk;)sin(NK)

have for allk andk’
Vsin(kq/2)sin(k/2)

i [ sink sink” —sin(Nk)sin(NKk’)]

(k)= . .
Y AN+ D)Moy 0y + o ) Vsin(ki2)sin(k'12) X ((af, 8y (@ ai,)n) 4.9
X{ (@ [nL(@g) —Nr(@g)] .
B and(ayay),+1 is computed through the other coefficients of
+ ()N (o) —Nr(wy) ]}, (4.2) the same order as
and fork#k’
1 Vsin(k/2)
i [ sink sink’ —si in(NK' (akan+1=5 (@@ 1+ (@@dh 1)~ =
(a*a ) i [ sink sink” —sin(Nk)sin(Nk") ] kAkn+175 n+ n+1 A1 (w)sirk
KT AN+ 1) Marg( 0y — o) VSin(k/2)sin(k'12) S _
> smk’smk+sm(Nk’)sm(Nk)I( )
— Wy
X{I(wk)[nL(wk) nR(wk)] W2k Sln(krlz) k
+|((1) r)[n (LL) r)_n ((l) r)]}, (43)
e TR (g ans1+ (@8 o+ 1~ (@ dn+1
wheren, (w) is the Bose-Einstein distribution functions at an .
inverse temperaturg, —(ak@k)n+1)- (4.9
1 Because the above equations contain the spectral density, we
N (w)= Qhho_1’ (44 have to specify its functional form. As has given in Eg.
(2.13, we employ the following form for the spectral den-
andng(w) is that atBg sity:
1 l(w)=lqw". (4.10
Nr(w)= Fha_ 1 (4.5

_ _ _ _ For a=1.0 anda=1.5, we have computed mean kinetic
Equations(3.20 and(3.21) imply that the first-order coeffi- energy of thenth particle e, up to the 20th order, where
cients must be pure imaginary. On the other ha(rdxﬁakh quantities(3.22—(3.25 seem to converge. For eaeh the

must be real at the same time. Thus, we have following sets of temperatures of for the reservoirs are cho-
+ sen: (@) T,=200.0 andTg=50.0, (b) T, =10.0 and T
(axa)1=0. (46 =0.1, and(c) T,=0.1 andTx=0.02. These choices of pa-

From Egs.(3.20 and(3.21), it turns out that ifn=1 the rameters are the same as used in Refby ZT. Other pa-
' rameters are commonly set @s= wy=%=1.0, u=0.1, and

(n+1)st-order terms are computed via the following equa- ~"" N g
tions from thenth order terms; for alk andk’ :55.\1,22 Lr;/the equilibrium state at inverse temperatgre:,

(@i )n+1= ' > (o) frwo S i
"N Dmeg(opt o) & en=én(B)= N7 Z‘l SN+

sink; sink’ +sin(Nk;)sin(Nk")

. mn ) 7l
X sinf —— cot Bﬁwosmm, (4.11

Vsin(k,/2)sin(k’/2) N+1
x((akakl>n—(allak>n) and thus the local temperaturés is defined by the above
function, i.e.,T,=1/¢, (&,).
sink; sink+ sin(Nk;)sin(NKk) In Figs. 2 and 3{T,} are plotted fora=1.0 and 1.5,
Sin(ky/2)sin(k/2) respectively. All the figures show that higher-order contribu-

tions are small except near the ends of the chain. In other
words, the bulk behavior is unchanged, where the tempera-
x(ak,akl)n—((allak,>n) . (4.7  ture profile near the ends of the chain exhibits various de-
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FIG. 3. Temperature profile along the chain te+1.5: (a) T,
The system size ibl=150.

FIG. 2. Temperature profile along the chain te+1.0: (a) T,
=200.0,Tg=50.0; (b) T,=10.0,Tg=0.1; (c) T_=0.1, Tg=0.02.
The system size ibl=150.

quantum fluctuations. We may say that differences in the
pendencies on the details of the parametefs,{r,@).  spectral densities does not affect the temperature profile at
When the reservoirs are Ohmic, the temperature profile neasw temperatures. In the medium temperature cases, Figs.
the ends are similar to those obtained by ZT with the quang(b) and 3b), mixed behavior of the classical and quantum
tum Langevin approach. features are observe(See also the figures in Rd#].)

When the reservoirs are Ohmic and temperature is high For T, =200.0 andTz=50.0, temperature deviations of
[Fig. 2a)], temperature drops near the left end which con-particles 2 and—1) from the mean internal temperature
tacts with the hotter reservoir and rises near the other engre plotted in Fig. 4 for various. There we find that the
contacting with the colder reservoir. This is the same parapeculiarity, i.e., inversion of temperature near the ends, is

doxical behavior as found by RLL and also observed by ZT ghserved in the sub-Ohmic and Ohmic cases, while it disap-
Such behavior disappears when the reservoirs are sup&ears wherw= a.(=1.04).

Ohmic[Fig. 3@]. The second particles from the ends show
monotonic temperature variation.

Figures Zc) and 3c) exhibit temperature profile when the
temperatures are low where quantum effects are important. In the previous subsection, the temperature profiles is
These two figures almost coincide. In both cases, temperdound to depend on values af In particular, the peculiarity
tures near the ends are high which should be due to thsund by RLL [3] disappears in the super-Ohmic regime.

B. Fokker-Planck equation in the classical limit
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FIG. 4. Deviations of the temperature at particle 2 and particle
(N—1) from the mean internal temperatufg,. The temperatures f
of the reservoirs ar& =200.0 andTg=50.0. Thus,T,,=125.0.

FIG. 5. CoefficientsC,, as a function ofn for various values

Since the differences are seen at high temperatures, some (t) 1 —[H,p(t)]— I
characteristics depending on the valuemust appear in the ot ik VB(N+1)mfwg
Fokker-Planck equation obtained from the master equation in )
the classical limit. Actually, we will find that the diffusion « sink | ()
term in the Fokker-Planck equation takes a different form K /sin(k/2) Sinh(Bfiwy/2)
from that derived from the Langevin equation except in the R
Ohmic case. In order to study the difference in relaxation at X{[xq,(ePhonZa, + e Ahenl2a))p(t)]
the contacting point, we investigate the Fokker-Planck equa- o2t | — Bhou?
tion for a system with a single reservoir. —[x1.p(t)(e W e a1},
When a heat reservoir is attached to the left end of the (4.16
chain, the classical Langevin equations for canonical vari-
ablesx,(t) andp,(t), n=1,2,... N are where we omitted suffix L. Expressing the creation and an-
nihilation operators by the position and momentum operators
dXx
—0 = HL (4.12 o) 1 2 | e
e [ p(O]- N+1)ﬁ (wy)sinksin(kn)
d ,Bﬁwk
=P M) = Syav oo+ 808D, (413 X{cot% > | DX [x1.p(0)]]
[

where {-,-} means the Poisson bracket. The correlation +z—mwosin(k/z){pn[xl,p(t)]

function of the Gaussian white random foréét) is con-
nected with the damping constantand the temperature at

the first particleB via the fluctuation-dissipation theorem as +[X1’p(t)]p”+Z[Xl'p“]p(t)}]' .19

In the classical limit, the density matrix(t) is replaced by

o 2V , the distribution functiorP(t) Therefore, Eq(4.17) is trans-
. . . : IP(t)
As is well known, the Langevin equations are equivalent to ———={H,P(t)}+ 2 Ch— + B8 1—|P(1),
the Fokker-Planck equation at ap &p"
(4.18
AP(t) 9 where
—r —iH, F>(t)}+yT —+p 1ap P(t),
1 2u (7
(4.19 cn=w—” f | 2w sin(k/2))cog ki2)sin(kn)dk
0JO
(4.19

whereP(t) is the distribution function on the phase space.

We now turn to our master equation. Inserting the repre-The time-evolution equation for the covariance matrix de-
sentation for operatoR, (3.15 into the master equation rived from Eq.(4.18 is also confirmed to agree with the
(2.6), we have classical limit of the corresponding quantum equation.
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When the reservoir is Ohmic, nameli{w)=1qw, the ture does not converge td(+Tg)/2 in the classical limit.

coefficientsC,, are evaluated as The difference of spectral densities induces the deviation of
temperatures around the both edges from the internal value.
Ch=mulobn 1, (420 The temperature in the vicinity of both ends become close to

the temperature of the reservoir whose spectral density has
larger power. We numerically confirmed that this feature is
general when the reservoirs are of different types.

We numerically investigated the effect of finite coupling.
We considered only the case of the same spectral densities of
the reservoirs. Finite coupling contributes to the temperature
lIim®(t)= S(1). (4.21 profile only near the ends of the chain and bulk behavior is
h—0 B the same as that of weak coupling limit. We found that the
profile near the ends depends on the spectral density for the
reservoirs. When the reservoir temperature is sufficiently low
where quantum fluctuations are dominant, temperature
growth near both the ends was observed in every case. When
. . 'the reservoir temperatures are high enough and the reservoir
C,, does not vanish fon=2. Figure 5 show€, as a func- 5 sb.ohmic or Ohmic, the same peculiar behavior, i.e.,

tion_(_)f n_for various valu_es OE.Y' The sign Ofc.:“ (_n>2) IS nonmonotonic change of the temperature, is observed as
positive in the sub-Ohmic regime and negative in the supers, nq in Ref.[3]. However, in the case of super-Ohmic res-

Ohmic regime. The difference in temperature profiles dis'ervoir, the peculiarity disappears.

cussed in the previous subsection should be explained by this |, order to understand the dependence on the spectral

and Eq.(4.18 agrees with the Fokker-Planck equation de-
rived from the Langevin equatiof®.15. In this case, the
two-point function(2.10 tends to the delta function in the
classical limit

27T|0

Therefore, we find that the correlation function of the noise
is white in the Ohmic case, which is consistent with the
Langevin equatiori4.13.

If the reservoir is sub-Ohmic or super-Ohmic, however

a dependence of the coefficierts density, we derived Fokker-Planck equations from the mas-
ter equation in the classical limit. If the reservoir is Ohmic
V. SUMMARY AND DISCUSSION the Fokker-Planck equation agrees with the standard one de-

éived from the Langevin equation. When the reservoir is

We investigated the effect of the types of reservoirs on th . . . .
g yp on-Ohmic, however, there appears difference in the diffu-

thermal conduction in the harmonic chain. We derived the’ ; he f £ th d derivative. Th f
master equation for a general many body system in conta on term, 1.e., the form of the second derivative. The coet-
with phonon reservoirs. In a many body system, the dissipa-'c'ents of the diffusion terms were calculated from the spec-

tion term is different from one of one-particle system due to'@l_density. This difference causes different temperature
profiles near the ends of the chain.

the noncommutability of many body interaction, so that the W hat th ion derived h b
dissipation term has rather complicated form. However, we e expect that the master equation derived here can be
have the explicit form for the dissipation terr®.16 and used for other systems such as spin systems for which the

(2.18. We used it as the basic equation to study behavior o angevi'n approach is practically 'difficglt. In'the case of the
the system. The equation generally satisfies the necessa rmonic chain, operatd was written in a simple form by

condition for the master equation that the canonical distribu!YSiNg SOMe system operators. Thus we were able to analyze

tion must be a stationary solution when the reservoirs are &Ee master (_aquati_on. systematically. This can be done because
the same temperature the harmonic chain is integrable. Thus, similar procedure can

In Sec. IlI, we have applied the master equation to energfzel]developed for other integrable systems, e.g.Xtfeodel

transport in the quantum harmonic chain. We attached a pho“ in thi h fined | hei bl
non reservoir at one end and another at the other end. At " this paper we have confined ourselves to the integrable

weak coupling limit(\—0), we obtained explicit form of system. _However, the master equation derived here is gener-
lly applicable to any system because the matrix element of

internal energy and energy flux. We rigorously proved tha%. licitly ai hus i Id b . ing
when the spectral densities of the reservoirs are of same typ IS EXp icitly given. Thus it would be an interesting future

the total energy of the system takes the arithmetic mean foblem to study the thermal condl_Jctivity_ in nonintegrable
the equilibrium energies & andTg regardless of the type system where the Fourier heat law is realiz2gl

of the spectral density. This result leads to the classical tem-
perature T, + Tg)/2 which is originally found by RLL using
the Ohmic type of reservoir. On the other hand, when the We gratefully acknowledge partial financial support from
types of spectral densities are different, the internal temperahe Grant-in-Aid for Scientific Research program from the
ture is a function of the both densities, so that the temperaMinistry of Education, Science and Culture.
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